Clique graph representations of ptolemaic graphs
نویسنده
چکیده
A graph is ptolemaic if and only if it is both chordal and distancehereditary. Thus, a ptolemaic graph G has two kinds of intersection graph representations: one from being chordal, and the other from being distance-hereditary. The first of these, called a clique tree representation, is easily generated from the clique graph of G (the intersection graph of the maximal complete subgraphs of G). The second intersection graph representation can also be generated from the clique graph, as a very special case of the main result: The maximal Pn-free connected induced subgraphs of the p-clique graph of a ptolemaic graph G correspond in a natural way to the maximal Pn+1-free induced subgraphs of G in which every two nonadjacent vertices are connected by at least p internally disjoint paths.
منابع مشابه
New results on ptolemaic graphs
In this paper, we analyze ptolemaic graphs for its properties as chordal graphs. Firstly, two characterizations of ptolemaic graphs are proved. The first one is based on the reduced clique graph, a structure that was defined by Habib and Stacho [8]. In the second one, we simplify the characterization presented by Uehara and Uno [13] with a new proof. Then, known subclasses of ptolemaic graphs a...
متن کاملCohen-Macaulay $r$-partite graphs with minimal clique cover
In this paper, we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is Cohen-Macaulay. It is proved that if there exists a cover of an $r$-partite Cohen-Macaulay graph by disjoint cliques of size $r$, then such a cover is unique.
متن کاملIntersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
متن کاملAn efficient g-centroid location algorithm for cographs
In 1998, Pandu Rangan et al. proved that locating the g-centroid for an arbitrary graph is -hard by reducing the problem of finding the maximum clique size of a graph to the g-centroid location problem. They have also given an efficient polynomial time algorithm for locating the g-centroid for maximal outerplanar graphs, Ptolemaic graphs, and split graphs. In this paper, we present an O(nm) tim...
متن کاملOn the Laminar Structure of Ptolemaic and Distance Hereditary Graphs
Ptolemaic graphs are graphs that satisfy ptolemaic inequality for any four vertices. The graph class coincides with the intersection of chordal graphs and distance hereditary graphs. The graph class can also be seen as a natural generalization of block graphs (and hence trees). In this paper, a new characterization of ptolemaic graphs is presented. It is a canonical tree representation based on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 30 شماره
صفحات -
تاریخ انتشار 2010